IoTrust Architecture

The IoTrust framework is designed by keeping security and innovation at the core. It consists of 7 main components as shown in the figure above. Each components is developed to handle specific set of tasks in the framework. The fundamental features of IoTrust project are secure bootstrapping, over the air firmware update and trust monitoring. All other services are built around these features. The IoTrust components are following.

End-Device

It is a small form-factor hardware which sits on the edge of an IoT network. It consists of microcontroller, memory, input/output peripherals, communication modules etc. In the IoTrust architecture, an End-Device will be used to collect, format, and send sensor data to a server. The End-Device shall incorporate at least a LoRaWAN capable module to guarantee a set networking of features.

Gateway

A Gateway provides last-mile LoRaWAN radio access to the end-devices. It is an edge component at the end of the LoRaWAN network infrastructure. A gateway is a multi-channel high performance LoRa transceiver module that can receive, process, and send several LoRa packets simultaneously using different spreading factors on various channels. Communications’ security is provided through the LoRaWAN message encryption, as defined by the protocol specification. This scheme is employed in communications to and from the End-Device and the Network Server.

Network Server

The Network Server is part of the LoRaWAN back-end infrastructure. It represents the central hub of all communications from and to LoRaWAN end-devices. It aims to hide the Physical (PHY) and Medium Access Control (MAC) layer details of the LoRaWAN protocol to the components that need to communicate with end-devices. The Network Server will manage all the low-level details to guarantee secure and reliable delivery of messages to and from the LoRaWAN infrastructure.

IoT Controller

The IoT Controller plays the role of authenticator in the Authentication, Authorisation, and Accounting (AAA) architecture. The End-devices perform the bootstrapping process. This process includes an authentication and key agreement stage. Once the device successfully authenticates itself, session keys are shared with the device in order to securely perform the regular operation tasks.

Authentication Server

The AAA architecture has been proposed by standardisation organisation, such as IETF, to provide a scalable solution to security management tasks in heterogeneous IoT ecosystems, especially those employing long-range wide-area networks. The authentication server employs EAP, a flexible solution that supports several methods, with various degrees of performance
requirements for each End-Device.

IoT Agent

The IoT Agent is a MQTT client which subscribes to the topics exposed by the MQTT broker running in the Network Server. At the heart of MQTT are the MQTT broker and clients. The data sent by the end-devices is received by the Network Server over LoRaWAN, which is in turn dispatched using MQTT messages. Each message is posted in a device-specific application reception topic. IoT Agent forwards the device metadata and sensor data to the asvin platform. It does it over HTTPs using REST API end-points. The IoT Agent acts as a bridge between the Network Server and the asvin Platform

asvin Platform

It is a Platform as a Service (PaaS) to facilitate over the air security patches for IoT devices using novel decentralized and distributed technologies. The asvin Platform provides a complete solution for device, security patches and rollout management. It is comprised of 4 components.

  1. IPFS
  2. Blockchain
  3. Customer Platform
  4. Version Controller

Innovations of the IoTrust

The IoTrust project will achieve its objectives by designing, developing and integrating a novel bootstrapping protocol, peer to peer distributed storage protocol, distributed ledger technology and inventive trust monitoring algorithm. The main innovations of the IoTrust are following.

  1. Secure Bootstrapping of LO-CoAP-EAP built with Internet standards for secure setup of IoT devices.
  2. Trust Monitoring: Human-centric trust report of IoT devices to simplify the maintenance decisions making of inexpert end-users for achieving cost effective and sustainable IoT infrastructure.
  3. Decentralized Peer-to-Peer Reprogramming: High resilience against DDoS attacks by decentralized distribution of encrypted firmware, configurations and patches based on peer-to-peer IPFS networks.
  4. Trusted layer for IoT Networks: DTL-based privacy-enhanced storage and IDs management to identify IoT devices and calculate their trust scores.

The core technologies used in the IoTrust are following.

Low-Overhead CoAP-EAP

It integrates the use of Authentication, Authorization and Accounting (AAA) infrastructure, the Extensible Authentication Protocol (EAP) Constrained and Constrained Application Protocol (CoAP).

IPFS

Interplanetary File System (IPFS) is distributed system for storing and accessing files. It will be utilized to store firmware files and security patches of IoT devices.

Hyperledger Besu

Device and firmware metadata information will be stored in a distributed ledger. Hyperledger Besu will be utilized for this task. It is an open-source Ethereum client developed under Linux Foundation.

LoRaWAN

It is Low Power Wide Area (LPWA) networking protocol designed to wirelessly connect battery operated devices. The end devices in the IoTrust framework will communicate using LoRaWAN protocol.

IoTrust Project Kickstart

It is our pleasure to announce that IoTrust project has been selected for funding under the NGI TRUST. The digital worx GmbH and Odin Solutions submitted the IoTrust project proposal in the NGI_TRUST 3rd Open Call. The NGI_TRUST has been cofounded by European Union’s Horizon 2020 research and innovation program. It supports the development of human-centric internet in the field of privacy and trust enhancing technologies.

The IoTrust aims to provide simple setup and reliable operation of IoT networks in a trusted and secure manner automated setup of IoT peer-to-peer networks and open source stacks for worldwide applications.

CYSEMA sorgt für Cybersicherheit in der Industie 4.0

digital worx realisiert gemeinsam mit 3 Partnern eine Best-Practice Lösung für Cybersicherheit im Maschinenbau.

Gemeinsam mit dem spanischen Partner OdinS realisiert digital worx eine sicheres Retrofitting-Lösung für Kallfass Verpackungsmaschinen im Rahmen der EU Initiative IoT4Industries.

Die Lösung umfasst ein Netzwerk aus externer Sensorik (Retrofitting), einer Anbindung an ein Cloud-Daten-Dasboard sowie eine Absicherung auf Basis der asvin Cybersicherheitsservices für Industrie 4.0.

screenshot-i40.kallfass.com-2020.02.13-09_29_33

Abb. 1: Online Dashboard zeigt den Status einer Verpackungsmaschine

IMG_1315 Abb. 2: Retrofitting-Sensorik an einer Verpackungsmaschine

Standards für Cybersicherheit in der EU werden konkret

EU Cybersecurity Act beschäftigt sich mit der Zertifizierung von IoT-Geräten.

Bereits am 27. Juni 2019 traf sich der Cybersecurity Act in Brüssel um die Pläne einheitlicher Standards für Cybersicherheit in Europa zu konkretisieren.
Experten für CyberSecurity beschäftigen sich derzeit mit der Umsetzung einer Zertifizierung für IoT Produkte.

Zielsetzung ist gemeinsam mit der Europäischen Kommission und den Mitgliedstaaten Standards Zertifizierungsvorgaben und Standards der IKT Sicherheit (Informations-und Kommunikationstechnik zu vereinheitlichen.
Ein wichtiger und notwendiger Schritt !

Mirko Ross hat zu diesem Thema einen Artikel auf Heise.de veröffentlicht.
Mehr dazu : https://www.heise.de

Cyberangriffe auf IOT-Geräte um 300% gestiegen

Die Beschleunigung der Cyberangriffe auf IoT Geräte ist beispiellos.
F-Secure Sicherheitsforscher schlagen Alarm.
Im ersten Halbjahr 2019 gab es bereits über 2,9 Milliarden Angriffe.
Das ist eine Verdreifachung von Cyber Attacken auf HoneyPots.

cybersecurity-week-banner-1

Mit der Zunahme der weltweit eingesetzten IoT Geräte steigt natürlich auch die Angriffsfläche.

Aber in erster Linie bieten die Geräte keinen oder nur mangelhaften Schutz vor Cyberangriffen.
Unzureichende Sicherheitsstandarts und massive Sicherheitslücken machen die Geräte anfällig für Cyberattacken.
Nicht nur Drucker, VOIP Telefone oder andere IoT Geräte sind davon betroffen, auch Medizin -und Kontrollgeräte sind gefährdet.
Die Verantwortlichen für die Cyberangriffen kommen vor allem aus China und Russland.

F-Secure räumte zwar ein, dass die Honey Pots verbessert wurden, aber es besteht kein Zweifel das die Cyberangriffe zunehmen.
Bots, Skripte und Malware werden für Angriffe im großen Maßstab entwickelt.
So können die Angriffe nicht nur über den angeschlossenen Computer kommen, sondern auch von einer mit Malware infizierte Smartwatch oder der IoT Zahnbürste.

Das große Problem : IoT Geräte gehen in den Verkauf und sind somit für das Unternehmen nicht mehr verfügbar.
IoT Geräte unterliegen nicht den gleichen Sicherheitstandarts wie eventuell andere Vermögenswerte im Unternehmen.

Verbindliche Sicherheitsstandarts fehlen noch immer.
Um IoT Geräte vor Ransomware und Kryptoming zu schützen benötigen sie regelmäßige Sicherheitsupdates.

Leider ist das immer noch nicht die Regel und Unternehmen sind nicht verpflichtet Ihre Produkte entsprechend auszurüsten.
Hier wird es höchste Zeit zu Handeln !

asvin.io unterstützt Hersteller vernetzte Geräte über Updates und Patches sicher zu betreiben.

Lesen Sie auch :
https://www.forbes.com

 

DIN Spezifikation für IOT Geräte

Am 06.05.2019 veröffentlichte Das deutsche Institut für Normung (DIN) erstmals eine Spezifikation zur Informationssicherheit von IoT Geräten.
Diese Spezifikation enthält IT Sicherheitsanforderungen und Empfehlungen zur Nutzung von privaten IoT Geräte.
Ein wichtiger Schritt um endlich einen Mindestsicherheitstandart für Smart Home Produkte einzuführen.
Den die Sicherheitslücken in den internetfähigen IoT Geräte sind enorm.
Cyper Kriminalität nimmt immer weiter zu und die Smart home Geräte haben dem kaum etwas entgegen zu setzen.
Mindestsicherheitsstandarts sind daher unabdingbar um den Verbraucher vor Hacking zu schützen.

Das Bundesamt für Sicherheit in der informationstechnik (BSI) begrüßt die Einführung der Spezifikation. Eine Grundlage zur Ausgestaltung des IT Sicherheitskennzeichens der Bundesregierung im Rahmen des IT-Sicherheitsgesetzes 2.0. ist damit geschaffen.
Auch an der Überlegung einer europäischen Normung wird, laut BSI Präsident Arne Schönbohm, gearbeitet.

Sichere Up Dates, verpflichtende Authentisierung vor Zugriffen über IP Schnittstellen, Verbot der Nutzung von Standartpasswörtern im Netzwerkbetrieb, verpflichtende Nutzung kryptographischer Verfahren nach Stand der Technik sind die wichtigsten Punkte die die DIN SPEC 27072 fordert.
Für den Gebrauchtszeitraum des IoT Geräts bedeutet das für die Hersteller, die Geräte durch up dates zu schützen.

Konkrete Anhaltspunkte für die Umsetzung von Security-by-Design und Security-by-Default sind in dem Dokument festgelegt und sollen bei der Konzeption und Entwicklung der IoT Produkte eingehalten werden.
Auslieferung, Inbetriebnahme, Individualisierung und Außerbetriebnahme sind dabei zu berücksichtigen.

Hersteller und Entwickler von Smart Home Produkten können die Spezifikation als Grundlage für Evaluierungs-und Zertifizierungsverfahren verwenden.
Produktzertifizeriungen zur DIN SPEC 27072 sind von der BSI bereits in Planung.

Weitere Informationen zur DIN SPEC 27072 erhalten Sie hier :
www.din.de

Mitassist Assistent €“ Effektive Unterstützung bei der Therapie psychischer Erkrankungen.

Die Stuttgarter Nachrichten berichten über unser Projekt Mitassist in Zusammenarbeit mit der Uni Göttingen.

Hier geht es zum Link : https://www.stuttgarter-nachrichten.de

mitassist

 

In Zusammenarbeit mit Chefarzt Knut Schnell der Universitätsklinik Göttingen entwickelte digital worx den Mitassist Assistent.
Ziel des Mitassist Assistent ist es Patienten mit psychischen Erkrankungen im Alltag zu unterstützen und Ärzten wichtige Informationen zur Therapieentscheidung zu liefern.

Mitassist ist eine Manschette, ausgestattet mit Sensoren, die am Unterarm getragen wird.
Kontinuierlich messen die Sensoren Stress-und Stoffwechselparameter, Bewegungsmuster, Schlafprofil und Muskelspannung und können so wichtige Hinweise liefern auf die Verfassung der Patienten.
Verhaltensänderungen werden dem Patienten über ein intuitives Feedbacksystem mitgeteilt und bietet dem Patienten Lösungsvorschläge, die vor ab mit dem Therapeuten abgestimmt wurden.

Insgesamt sieben Projektpartner ermöglichen die Umsetzung des Mitassist Assistent.
Mit dabei Telepaxx Medical Archiving Gesselschaft. Über deren Server werden die sensiblen Daten vollverschlüsselt um die Datensicherheit zu gewährleisten.

 

1 2 3 57